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Although many lung disease diagnostic procedures can benefit from computer-aided detection 

(CAD), current CAD systems are mainly designed for lung nodule detection. In this paper, we 

focus on tuberculosis (TB) cavity detection because of its highly infectious nature. Infectious TB, 

such as postprimary TB and HIV-related TB continues to be a public health problem of global 

proportion, especially in the developing countries. Cavities in the upper lung zone provide useful 

cue to radiologists for potential infectious TB. However, the superimposed anatomical structures 

in the lung field hinder effective identification of these cavities. In order to address the deficiency 

of existing computer-aided TB cavity detection methods, we propose an efficient coarse-to-fine 

dual scale technique for cavity detection in chest radiographs. Gaussian-based matching, local 

binary pattern and gradient orientation features are applied at the coarse scale; while circularity, 

gradient inverse coefficient of variation and Kullback-Leibler divergence measures are applied at 

the fine scale. Experimental results demonstrate that the proposed technique outperforms other 

existing techniques with respect to true cavity detection rate and segmentation accuracy. 

Keywords— Classification, segmentation, computer-aided detection (CAD), tuberculosis (TB) 
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I. INTRODUCTION 

 

Chest radiographs or chest X-ray (CXR) images are widely used to diagnose lung diseases such 

as lung cancer, tuberculosis (TB), and pneumonia. Due to the superimposed anatomical structures 

in the human chest, the CXR images are generally noisy and the diagnosis requires careful 

examination by experienced radiologists. Computer-aided detection (CAD) systems in chest 

radiography have therefore been developed to reduce the workload of radiologists. Ginneken et al. 

reviewed the CAD technological development in 2001 [1] and 2009 [2]. Developing a single 

system that looks into all abnormalities on a chest radiograph is practically impossible due to the 

widely different characteristics of abnormalities, and specific focus of the image processing 

algorithms. Therefore, the current CAD systems often aim at a single aspect, e.g. detection of lung 

cancer nodules. This strategy has been proved to be successful, and many effective algorithms have 

been developed for routine diagnostic procedures [2]. 

A general CAD system framework is shown in Fig. 1. There are four modules in the system. First, 

a CXR image undergoes the preprocessing step, which generally includes image enhancement, 

noise removal and lung field segmentation. In the next step, candidates that may contain 

abnormalities are coarsely detected using pattern recognition techniques. In the third step, features 

that can be used to identify abnormalities are identified from the candidates. Depending on the 

radiographic manifestation of the abnormalities, these features could be geometric, photometric or 

textural. Finally, a classifier is applied to perform a high level screening to reduce the false positive 

rate. An efficient CAD system relies on robust image processing, pattern recognition, and artificial 

intelligence techniques. For instance, a recent CAD system [3] designed for identifying lung 

nodules uses an active shape model for lung field segmentation, followed by a weighted 

multi-scale convergence-index filter for nodule candidates detection. To identify the nodules 

successfully, an adaptive distance-based threshold technique is applied to segment the contour of 
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each candidate. The geometric, intensity and gradient features are then extracted from the 

segmentation results. After the first level screening, a Fisher linear discriminant classifier is used 

on a subset of these features to perform the final detection. 

Nodule detection has been the main focus in current chest X-ray CAD systems. However, as 

Ginneken et al. pointed out [2], there are other diseases, e.g. tuberculosis (TB) that relies heavily 

on chest radiograph examination, can benefit from the CAD systems. Infectious TB is still a public 

health problem in many countries [4]. Therefore, our research focus is on developing a CAD 

system for the diagnosis of infectious TB. The TB can be identified based on different radiographic 

patterns, such as cavity, airspace consolidation, and interstitial opacities [7]. A few existing CAD 

systems use texture analysis to detect interstitial changes [2]. However, the interstitial pattern is not 

a reliable radiographic cue for infectious TB. According to a recent research article on TB [5], 

cavitation in the upper lung zone (ULZ) is a typical radiographic feature of PTB. So far, 

insufficient research has been done for efficient detection of TB cavities. Rui et al. [6] recently 

proposed a hybrid knowledge-guided framework (HKG) for TB cavity detection, which contains 

three major steps. In Step 1, the cavity candidates are detected using adaptive thresholding on the 

mean-shift clustered CXRs. In Step 2, a segmentation technique is applied to the candidates to 

generate contours of important objects present in the CXR image. In Step 3, the contour-based 

circularity and gradient inverse coefficient of variation (GICOV) features are extracted for the final 

cavity classification using a Bayesian classifier. Although, this technique provides a good 

performance, it has several limitations. First, due to cavity size variation and the occlusion from 

neighboring superimposed anatomical structures, the mean shift cluster result is sensitive to the 

parameter values used. Secondly, the adaptive threshold, which is a quadratic polynomial of 

GICOV score, does not perform well when the cavity boundary is weak. These two limitations lead 

to high missing rate of true cavities. To overcome these problems, we propose a dual scale feature 
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classification strategy for TB cavity detection in chest radiographs. First, a coarse feature 

classification step is performed to detect the cavity candidates by capturing the geometric, textural 

and gradient features in the lung field. Second, a Hessian matrix based technique is applied to 

enhance the cavity candidates, which leads to a more accurate contour segmentation. Finally, fine 

features based on the shape, edge and region are extracted from the segmented contours for the 

final cavity classification. Experimental results show that the performance of the proposed 

candidates detection, segmentation and cavity classification modules are superior compared to the 

results obtained using other related CAD systems. 

The rest of this paper is organized as follows. Section II explains the cavity pattern in CXRs. 

Section III describes our proposed method in detail. Section IV reports and analyzes the 

performance of the proposed technique. Conclusion and future work are presented in Section V. 

II. MANIFESTATION OF CAVITY IN CHEST RADIOGRAPHS 

 

In chest radiography, a cavity is typically defined as a parenchymal cyst greater than one cm in 

diameter, containing either air or fluid or both [7]. Since the cavities are created by tissue necrosis 

within nodules or masses, their radiographic patterns are usually demonstrated as annular rings 

with variable wall thickness. Fig. 2(a) shows a CXR image with a typical cavity (inside the 

rectangle region), which manifests as a focal lucent area on the image and appears as a “hole” in the 

patient’s upper left lung zone. However, these holes might be blurred due to the overlapping 

projection of anatomical structures or some other abnormalities in the neighborhood, which makes 

the identification of cavities a difficult task for radiologists. Fig. 2(b) is another example of a TB 

cavity obscured by the left clavicle. Fig. 2(c) shows an example where the cavity is overlapped 

with interstitial opacities.  

III. PROPOSED TECHNIQUE 
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Computer-aided feature identification in CXR images is comparatively more challenging than 

feature identification in medical images of other body parts because of the rib cage and other 

superimposed anatomical structures in the lung field as illustrated in Fig. 2. After examining the 

geometric, textural and photometric characteristics of TB cavities, we propose a coarse-to-fine 

feature classification technique for cavity detection. Fig. 3 shows a schematic of the proposed 

technique. It is observed that there are three major steps: (i) coarse feature classification, (ii) 

contour segmentation and (iii) fine feature classification. A CXR image is first divided into patches. 

In the first step, a coarse feature classification is performed on each image patch to identify 

candidates which are suspected to contain cavities. Two modules are used to capture the coarse 

features: Gaussian-model-based Template Matching (GTM), and Local binary pattern and 

Histogram of oriented gradient-based Feature Classification (LHFC). In the second step, contours 

of the chosen candidates are segmented using two modules: Hessian-matrix-based Image 

Enhancement (HIE) and Active Contour-based Segmentation (ACS). The HIE is used to boost the 

cavity edges. The Edge-based ACS is then applied to segment the enhanced images. In the third 

step, a Contour-based Feature Classification (CFC) module is applied. Fine features including 

shape, edge and region are extracted from the contours. Cavity classification is then performed 

based on these features. A detailed description of these five modules is presented in the following 

sections. 

A. Gaussian-model-based Template Matching (GTM) 

 

The template matching (TM) is a widely used technique in pattern recognition, where the 

presence of a pattern in an image is detected by comparing different parts of an image with a 

reference pattern known as template. In many TM techniques, instead of comparing a given 

template directly, a transformation of the template is matched with similar transformation of a 

candidate region using a similarity measure. Normalized cross correlation is often used to measure 
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similarity because of its fast implementation using the fast Fourier transform. Since traditional TM 

is sensitive to rotation and scale, rotation and scale invariant transform such as Fourier-Mellin 

transform [8], or ring-projection transform [9] can be incorporated into TM. However, these 

transforms provide good results only when a cavity shape/size deviates very little from the 

template shape/size. To avoid missing true cavities, a solution is to use a large set of templates 

covering different cavity sizes and rotation angles. 

Using a large set of templates can be computationally expensive but still cannot guarantee to 

detect all cavities. Therefore, the proposed technique makes use of prior knowledge given by TB 

experts to generate a customized template database specific for TB cavities. Observe that in the 

“hole” like cavity shown in Fig. 2(a), line-cut intensity profiles in various directions of the cavity 

region appear similar. Fig. 4(a) shows the magnified region of a cavity, and Fig. 4(b)-(e) show plots 

of the four intensity lines passing through the image center at 0°,45°,90°,135°. Each line’s intensity 

profile appears as a bi-modal Gaussian function. Based on the similarity of these intensity profiles, 

it is reasonable to mimic the cavity pattern using rotationally symmetric pattern such as 2D circular 

or elliptical Gaussian ring distribution (as shown in Fig. 4(f)). Note that if a line-cut intensity 

profile of Fig. 4(f) is calculated, a bimodal Gaussian distribution is obtained where the two major 

peaks correspond to the two sides of the ring. 

A generic 2D Gaussian ring is defined as follows: 

2 2 2

2

(1 ) ( )

2( , )

w x y

I x y e 

 


                        (1) 

where 
2 2 2 2

ab
w

a y b x




, a and b are the two radii (distance between the origin and the peaks on x,y 

axes), I(x,y) is the image intensity function in the 2D domain, and   is the standard deviation of the 

Gaussian distribution which determines the wall thickness of the ring. Noting that when a = b = r, 

Eq. (1) represents a 2D circular Gaussian ring, where r is the inner radius. Rotated patterns can be 
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generated by incorporating a rotation angle   into the following coordinate transformation: 

'cos 'sin

'cos 'sin

x x y

y y x

 

 

 


 
                        (2) 

where x’, y’ are the pixel’s location before rotation. Using Eqs. (1) and (2), the template database 

can be built with various sizes, wall thicknesses and rotation angles by changing the value of 

parameters a, b,   and  . For example, given a 512×512 CXR image with a pixel spacing [0.8 

mm, 0.8 mm], the physical size represented by the image is 40.96 cm×40.96 cm. Since the 

diameter of the largest cavity is usually less than 6 cm, we define the template size as 75×75. 

While the wall thickness is within the range of [4mm, 16mm], parameter   is varied from 5 to 20 

pixels. Fig. 5 shows a set of templates, with various radii, rotation angle and wall thickness, used in 

this paper. 

B. Local binary pattern and Histogram of oriented gradients-based Feature Classification 

(LHFC) 

 

Although the proposed GTM module works well for cavities of typical shape and intensity, it is 

difficult to detect cavities obscured by anatomical structures or some other abnormalities in the 

lung field. To address this issue, we combine the local binary pattern (LBP) and histogram of 

oriented gradients (HOG) features, which have been shown to be useful in human detection in 

handling partial occlusion [10]. The LBP [11] is a hybrid texture feature widely used in image 

processing. It combines the traditionally divergent statistical and structural models of texture 

analysis. The LBP feature has some key advantages, such as its invariance to monotonic gray level 

changes and computational efficiency. The HOG feature [12], similar to Lowe's scale-invariant 

feature transform (SIFT) feature, is regarded as an excellent descriptor to capture the edge or local 

shape information. It has a great advantage of being robust to changes in illumination or shadowing. 

These two features are expected to complement well the GTM technique, especially in blurred 
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regions containing cavities, to detect TB cavity candidates, 

In the LHFC module, a feature vector, which combines the LBP and HOG features, is calculated 

for each candidate window. The feature vector is then fed to a classifier, which is trained offline 

using ground truth (cavity and non-cavity) training data. The classifier will assess the windows as 

cavity candidates (positive samples) or not (negative samples). The candidate windows are 

generated using a sliding-window paradigm where an image is scanned from the top left to the 

bottom right with overlapping rectangular sliding windows. The windows are scanned row-wise. 

The window size is consistent with the template size in GTM, i.e., each window has a size of 

75x75. The overlap between two consecutive windows is 2/3 of the window size. 

The computation of these two features and the classification using Support Vector Machine 

(SVM) [13] are now explained below. 

1) Computation of the LBP feature 
 

In this paper, the LBP feature vector for a window is calculated in three steps. In Step 1, 

explained in Fig. 6, the LBP values are calculated by applying the LBP labeling on each pixel. 

Here, each pixel in the window is compared to each of its eight neighbors. The LBP value for the 

pixel is then calculated as follows:  

1

,

0

1 if  0
( )2       Note: ( )

0 otherwise

P
p

P R p c

p

x
LBP u g g u x





  
    

 
      (3) 

where gp, gc are gray levels of the neighborhood pixels and center pixel, respectively, and ( )u  is the 

unit-step function. For a window of 75×75, there will be 5625 LBP values, with dynamic range 

between 0 to 255. In Step 2, an LBP-histogram, with 256 bins, is generated for the window from 

the 5625 computed LBP values. Finally, in Step 3, to reduce the dimensional numbers of features, 

we adopt a popular approach used in texture analysis, e.g. Ref. [14] by calculating the six statistical 

features (mean, standard deviation, skewness, kurtosis, entropy and energy) based on the LBP 
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histogram. Fig. 7(b) shows the 6 LBP features calculated from the image window shown in Fig. 

7(a). 

2) Computation of HOG feature 
 

For computational convenience, we first resize each 75×75 image window into a 64×64 

window using bicubic interpolation. The HOG feature for each resized window is then calculated 

as follows: 

Step1. Gradient Computation: The gradient of each pixel in the window is calculated using two 

filter kernels: [-1, 0, 1] and [-1, 0, 1]
T
. Let the magnitude and orientation of the gradient of the i

th
 

pixel (1 4096i  ) be denoted by mi and φi, respectively. 

Step2. Orientation Histogram: Each window is first divided into non-overlapping cells of equal 

dimension, e.g., a rectangular cell of 8×8. The orientation histogram is then generated by 

quantizingφi into one of the 9 major orientations: 
(2 1)

9 9

k  
 , 1 9k  . The vote of the pixel 

is weighted by its gradient magnitude mi. Thus, a cell orientation histogram Hc is a vector with 

dimension of 1×9.  

Step3. Block Normalization: In order to account for changes in illumination and contrast, the cell 

histogram must be locally normalized, which requires grouping the cells together into larger, 

spatially-connected blocks. The block size we use is 2×2 cells (i.e., 16×16 pixels), and the 

overlap between two neighboring blocks is 1/2 of the block size. Therefore, a whole window 

contains 49 blocks. The block divisions for a window image is shown in Fig. 8.  The feature vector 

of one block Hb is concatenated by four cell histograms: Hb = [Hc1 Hc2 Hc3 Hc4]. Note that, the 

orientation histogram of a block Hb is a vector with dimension of 1×36. The normalized HOG 

vector is then calculated as follows [12]. 
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ˆ b
b

b

H
H

H
                              (4) 

where .  represents the L
2
 norm. 

The HOG feature vector of an image window (with 49 blocks) is a concatenated vector of all 49 

normalized block orientation histogram ( ˆ
bH ), and will have a dimension of 1×1764 in our case. 

Fig. 7(c) shows the plot of the HOG feature vector of the image window shown in Fig. 7(a). 

Combining the LBP and HOG features, a feature vector of size 1×1770 is obtained for each 

image window. These features vectors are fed to the SVM classifier, explained below, for cavity 

candidates detection. 

3) Classification using Support Vector Machine (SVM) 
 

Although SVM can perform both linear and non-linear classification, the basic SVM is a 

non-probabilistic binary linear classifier [13]. It is commonly used in machine learning as a 

supervised learning technique for recognizing patterns. Our goal is to use a pattern’s feature 

vectors to identify which class it belongs to. The classification decision is based on the value of a 

linear combination of these feature vectors. Researchers use SVM classifiers in applications 

because of its efficiency in handling both linear and non-linear classification problems. Once the 

separating hyperplane is obtained after the training step and the classification accuracy is satisfied, 

the given task (data) could be linearly separated in a high-dimensional feature space using this 

hyperplane. 

For two-class classification, the optimal separating hyperplane in SVM to separate two sets of 

data in a feature vector space is defined by 0w x b   , where x  is the feature vector space, w  is 

the normal vector to the hyperplane, and b is the offset of the hyperplane from the origin. Given M 

training feature vectors  ,1kx k M  , and the corresponding ground truth classification result 
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 [1, 1],1ky k M    , the optimal hyperplane coefficients vector w  is generated as follows: 

 
21

min , . . ( , ) 1, 1
2

       k kw s t y w x b k M               (5) 

where ( )   denotes a kernel function [13]. Linear, polynomial, radial basis function (RBF) and 

sigmoid are widely used as SVM kernels. In our tasks, we use the RBF kernel function which 

performs better than other kernels. 

The SVM training builds a model that is able to distinguish the belonging class of any future data 

based on the Support Vectors obtained by the training dataset. Any new feature vector ix  is 

classified according to the output of the decision function: 

1

( ) ( , )
M

i k k k i

k

f x y x x b


                        (6) 

where 
k  is the Lagrange multiplier. If ( ) 0if x  , it means ix  belongs to class 1y  , and if 

( ) 0if x  , it means ix  belongs to class 1y   .  

An example of cavity candidate detection using GTM+LHFC (note: LHFC includes the LBP and 

HOG features) is shown in Fig. 9. Fig. 9(a) shows the original CXR image, and Fig. 9(b) shows 

three detected TB cavity candidates C1, C2, C3. The magnified images of these candidates are also 

shown in Fig. 9(c). To eliminate the false positive candidates (C1 and C3), further contour 

segmentation and fine feature classification are necessary. 

C. Hessian-matrix-based Image Enhancement (HIE) 

 

As shown in Fig. 9 (b), the GTM+LHFC detects a large number of cavity candidates some of 

which may be false positives (e.g., C1 and C3 shown in Fig. 9(b)). In this section, we present a 

technique to enhance the cavity feature in a candidate, which will help in reducing the number of 

false positives. In order to reduce the effect of noise and irrelevant anatomical structures or 

abnormalities, we apply the HIE to enhance the candidates. Note that the Hessian matrix has been 
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applied in the literature to enhance local patterns such as plate-like, line-like or blob-like structures 

[14]. The proposed HIE has three steps, which are described in the following: 

Step 1. Laplacian of Gaussian Smoothed Image 

In this step, three Laplacians (in three directions) of a Gaussian smoothed image, at scale  , are 

obtained by convolving a cavity candidate with the 2nd derivative of Gaussians as follows: 

2

2

2

( , , ) ( , ) ( , , )

( , , ) ( , ) ( , , )

( , , ) ( , ) ( , , )

xx xx

xy xy

yy yy

L x y I x y G x y

L x y I x y G x y

L x y I x y G x y

  

  

  

  


 


 

                 (7) 

where ( , )I x y  is the candidate and G is the Gaussian kernel. Note that for a candidate of size 75

×75, each of the three L matrices in Eq. (7) will have a size of 75×75.  Fig. 10 shows the 2nd 

derivative of a 1D Gaussian kernel. The intrinsic characteristic of this analysis is that the 2
nd

 

derivative of the Gaussian kernel at scale   generates a probe kernel that measures the contrast 

between the regions inside and outside the range (- , ) in the direction of the derivative. 

Step 2. Hessian Matrix Calculation 

For a given   value, the Hessian matrix corresponding to pixel ( , )i ix y  in the candidate is 

calculated as follows: 

( , , ) ( , , )
( , ) .

( , , ) ( , , )

xx i i xy i i

i i

yx i i yy i i

L x y L x y
H x y

L x y L x y

 

 

 
  
 

              (8) 

where ( , , ) ( , , )xy i i yx i iL x y L x y  . A known problem of multi-scale analysis using Hessian matrix 

is that over-blurring can occur during the multi-scale smoothing, which may increase false 

detections [16]. Therefore, in this paper, we set the   value equal to the object scale calculated 

using the method in Ref. [17]. The object scale at every pixel is defined as the radius of the largest 

hyperball centered at the pixel such that all pixels within the ball satisfied a predefined image 

intensity homogeneity criterion. Object scale represents the geometric information (size) of local 
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structure. Object scale at the center of a blob-like structure approximately equals the radius of the 

blob in pixel size. 

Step 3. Image Enhancement Using Eigenvalues of Hessian Matrix 

The pixel ( , )i ix y  in the candidate with intensity ( , )i iI x y , is enhanced using the following 

equation: 

1( , ) ( , )E i i i iI x y I x y                         (9) 

where 
1 and

2 are eigenvalues of ( , )i iH x y , and 1 2  . The intuition in Eq. (9) of using only 

the largest eigenvalue for cavity enhancement is based on the fact that the Hessian matrix has a 

strong edge effect (for those strong edge points, 1 2 0   ) [18]. Although cavities are usually 

embedded in noisy surroundings due to the neighboring necrosis caused by cavitation, the inside of 

a cavity (filled with air or fluid or both) still has lower intensity than the background. Thus the 

strong edge between the inside and outside of a cavity gives a good clue to indentify the contour of 

cavity. Different techniques of edge enhancement were evaluated in our study, such as 

contrast-limited adaptive histogram equalization [19], fuzzy C means [20] and speckle reducing 

anisotropic diffusion technique [21], and the proposed HIE technique achieves the best 

performance. 

The enhanced window candidates C1-C3 are shown in Fig. 9(d). It is observed that the annular 

ring-like structure is greatly enhanced. 

D. Active Contour-based Segmentation (ACS) 

 

Active contours or deformable models are generally divided into two types: parametric active 

contours (typically known as snakes) and geometric active contours (level set). The snake-based 

techniques are often faster than level sets in virtue of efficient numerical methods. In addition, the 

level sets produce more false detections due to its multiple objects capturing ability. Therefore, in 
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this paper, we use a snake-based technique known as improved fluid vector flow (IFVF) [22]. In 

this technique, a snake contour represented by v evolves through the candidate window to reach a 

force balance equation int ext( ) ( ) 0F v F v  , where int ( )F v  is the internal force constraining 

contour’s smoothness, and ext ( )F v  is the external force attracting the contour toward image 

features.  

The IFVF is a fast and accurate edge-based snake technique, because of the introduction of both 

static and dynamic terms in the external force. 

ext static dynamic( ) ( ) ( )F v F v F v                     (10) 

The Fstatic could be a static external force which overcomes the edge leakage problem, e.g. we use 

boundary vector flow (BVF) proposed in [23] as the Fstatic. The BVF extends the capture range 

further to the entire image based on simpler interpolation. Four potential functions Ψx , Ψy, Ψxy, 

and Ψyx are computed using line-by-line interpolations in the horizontal, vertical, and two diagonal 

directions. The Fstatic is calculated as follows: 

1

2

= =( , )

2 2
= =( ( + ), ( - ))

2 2

static x y

static xy yx xy yx

F or

F

   

    
       (11) 

The Fdynamic is achieved in three steps: 

1) Given a HIE enhanced candidate image, a binary edge map B is generated using smoothing 

technique speckle reducing anisotropic diffusion [21] and the Canny edge detector[22]. 

2) By comparing the edge map points to the current snake contour points (snaxels), a new 

control point (xc,yc) is selected by considering the point which contributes more to the distance 

between snake contour and object boundary [22]. We use the Hausdorff distance to find such a 

point. Assuming two sets of points S and O, the Hausdorff distance is then defined as 

  ( , ) max min ( , )
s So O

h S O d s o


  where d(s,o) is the Euclidean distance between a snaxel s and a 
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object boundary point o. So the control point is chosen as the point on the object boundary which 

has the Hausdorff distance value. 

3) For any pixel (x,y) on the contour v, its Fdynamic(x,y) is then calculated as follows: 

dynamic

'( , )
( , ) (1 )

'( , )

d x y
F x y B

d x y



 


                (12) 

where 1    controls the outward or inward direction. In this paper, we use 1  , as the initial 

contour is automatically set as a small circle in the center of the window image with radius of 3 

pixels. d’(x,y) is the Euclidean distance between points (x,y) and (xc,yc). Note that the term (1 )B  

makes the Fdynamic zero for those points which already reach edges. Based on the edge map 

generated from the enhanced candidates images using HIE, the IFVF segmentation result of these 

candidates C1-C3 are shown in Fig. 9(e). The stopping criterion of the evolution is determined by 

computing the difference in x and y locations of the corresponding contour points between two 

consecutive iterations. If it is less than a convergence threshold t, the active contour evolution will 

be stopped. In our experiments, t is empirically set to 0.05. Based on our tests, there is no 

significant improvement even if t is smaller than 0.05. 

E. Contour-based Features Classification (CFC) 

 

The last module in our proposed technique is the CFC, which performs the fine scale feature 

classification. Three types of contour-based features: shape, edge and region, are extracted for the 

final cavity detection. These features include circularity measure [25], Gradient Inverse 

Coefficient of Variation (GICOV) [26], and Kullback-Leibler Divergence (KLD) [27] between the 

pixel intensity distributions inside and outside the contour. The computation of these three features 

are explained below: 

4) Assuming a contour has one centroid, L points are selected from the contour in L cardinal 

directions. The circularity of the contour is then calculated as scaled variance as follows: 
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var( ( , ))
,    1,2,...,

max( ( , ))

i i

i i

d x y
C i L

d x y
                  (13) 

where d(xi,yi) is the distance from the centroid to the contour point (xi,yi) in the i
th

 direction. In this 

paper, we use L = 16. The circularity feature is a feature which could effectively reduce the false 

positives. 

5) Based on the observation that the inner boundary of a cavity often has dark-to-bright 

transition, the GICOV value of L points on the contour is calculated as follows: 

a) For the contour point (xi,yi) in the i
th

 direction, its gradient in normal direction gn(xi,yi) is 

calculated as ( , ) ( , ) ( , )n i i i i i ig x y I x y n x y  , where ( , )i in x y  is the unit outward normal 

vector at this point. 

b) The mean and standard deviation of gn, denoted by m and s, are then calculated as 

1

1
( , )

L

n i i

i

m g x y
L 

   and 2 2

1

1
( ( , ) )

1

L

n i i

i

s g x y m
L 

 

 . 

c) The GICOV value of the contour is finally achieved using following equation: 

GICOV
m

s L
                           (14) 

6) Given the probability distributions, P and Q, of the pixel intensity values inside and outside 

the cavity respectively, the KLD for a candidate window is calculated as follows:  

1

( )
( ) ln

( )

B

i

P i
KLD P i

Q i

                       (15) 

where B is the number of bins in the histogram span by P and Q. The KLD compares the difference 

in gray level distribution between the pixels inside and outside the contour. 

Table 1 shows the above feature values corresponding to three contours shown in Fig. 9(e). As in 

the coarse feature classification step, we select the SVM as the fine feature classifier in this step. 

Based on the feature values (in Table 1), the trained SVM classifier identifies the Contour-2 as a 
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positive and Contour-1 and Contour-3 as negatives. The final detected cavity (corresponding to 

Contour-2) in the CXR image is shown in Fig. 9(f) as the red contour. The result matches with the 

ground truth. 

IV. PERFORMANCE EVALUATION 

 

In this section, we evaluate our proposed coarse-to-fine dual scale technique with respect to three 

aspects: the effectiveness of candidate selection; the accuracy of contour segmentation; and the 

accuracy of final cavity detection.  

A. Experimental Dataset and Parameters Configuration 

 

A cavity dataset of 35 CXR images containing 50 cavities is obtained from the University of 

Alberta Hospital. All the images were independently read by three experienced chest radiologists 

who are specialized in TB diagnosis. The presence of TB cavities was confirmed by the agreement 

of at least two radiologists. The sample histograms of cavity properties such as diameter, 

circularity and wall thickness are shown in Fig. 11. For computational efficiency, the original CXR 

images are resized as 512×512 (or close to this size) with a fixed pixel spacing [0.8 mm, 0.8 mm]. 

Since all the cavities are located in the ULZ, a similar preprocessing procedure as described in [6] 

was applied to segment the target lung region, which reduces the processing area to a smaller 

rectangular bounding box. Fig. 12 shows an example of the target area. 

The proposed cavity detection technique is implemented in MATLAB 2007b on an Intel 

Pentium 4 CPU 2.8G Hz with 2G RAM computer. All the parameters in the proposed technique 

are listed in Table 2. The SVM classifiers in both coarse and fine feature classification are built 

using LIBSVM software [28]. To train the SVM classifiers, we applied the ‘leave-one-out’ method 

[29] since the size of samples with cavities is small. For example in LHFC, to detect the candidate 

regions in one of the 30 CXR images, we use the remaining 29 CXR images for the training. The 

training set contains the LBP and HOG feature vectors extracted from windows with and without 



 19 

cavities (positive and negative samples) in these 29 CXR images. Note that the negative samples 

for training were selected from the contralateral position of the positive samples based on the 

approximate symmetry of the lung field. The SVM classifier in CFC is trained in a similar way. 

B. Effectiveness of Candidate Selection 

 

The proposed coarse feature classification technique for candidate detection is evaluated by the 

missing rate (MR), which is calculated as follows: 

# of Cavities Excluded from Candidates
MR 100%

Total # of True Cavities
           (16) 

A preliminary experiment using only GTM for candidate detection has already been reported in 

[30]. We anticipate that by integrating with other novel techniques, a better result can be obtained. 

Thus we used different combinations of LBP and/or HOG features together with GTM, and 

checked whether the missing rate could be reduced. Table 3 shows our test results. 

From the results, we observe that the hybrid knowledge-guided (HKG) framework for TB cavity 

detection [6] missed more cavities than our proposed approach. HKG is based on an adaptive 

thresholding on the mean-shifted clustered image for candidate detection. Its high missing rate is 

due to two reasons. First, the mean-shift clustering approximates nearest neighbors intensities and 

space information but neglects the texture. Second, the adaptive threshold, which is a quadratic 

polynomial of the GICOV feature, is not suitable for modeling all shapes, especially when the 

boundary of a cavity is weak. Fig. 13 compares the detection results of HKG and our technique. 

The green boxes represent cavity regions reported by the classifier. In Fig. 13(a), HKG cannot 

identify both cavities due to the failure of mean-shift clustering in the noisy ULZ. Our technique is 

able to identify the two cavities (Fig. 13(b)). Fig. 13(c) is yet another example showing the 

adaptive threshold value used in HKG unable to identify the cavity. However, our technique is able 

to detect all cavities correctly (Fig. 13(d)). 

Using the same parameter values for LBP and HOG as in the literature, we found that a 
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combination of LBP and HOG together with GTM achieved better performance. Our finding is 

consistent with the results in human detection using LBP and HOG features [10]. HOG performs 

poorly when the background is cluttered with noises. LBP is able to alleviate this deficiency. It can 

filter out noises following the uniform pattern estimation. However, if LBP is used alone without 

HOG, the entire ULZ will be extracted if some other abnormalities are also present in the area. In 

that case, the HOG helps to reduce the false positives based on the available edge information. Fig. 

14 illustrates the complementary effect of LBP and HOG. The window reported by the classifier 

should contain a complete cavity in order to be qualified as a positive candidate. Note that in the 1
st
 

row 2
nd

 col when using only HOG, no reported window contains a complete cavity. The HOG 

performs poorly when the background is cluttered with noises, and the edge information is no 

longer reliable. Similarly, in the 2
nd

 row 1
st
 column, when using only the LBP, the small cavity is 

missing because no reported window contains the complete small cavity, and only the larger cavity 

is fully contained in a reported window. 

The above test results show that combining the LBP and HOG features for capturing the texture 

and gradient information around the cavity region, and using the GTM for shape recognition, 

contributes to the low missing rate of the proposed coarse feature classification technique. 

C. Accurate Contour Segmentation 

 

We evaluate segmentation accuracy using the following Tanimoto measure (TMM) [6]: 

c g

c g

R R
TMM

R R
                             (17) 

where Rc denotes the region enclosed by the contour generated by the segmentation techniques, 

such as DBC-GVF [6] and our IFVF [22]; Rg denotes the region of a TB cavity that is enclosed by 

the ground truth contour manually drawn by radiologists; and  denotes the cardinality (# of 

pixels). TMM = 0 indicates that the segmented contour has no intersection with the ground truth, 
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while TMM = 1 indicates that the segmented contour is identical to the exact cavity. To improve 

the segmentation accuracy, we apply the HIE on the candidates before segmentation.  

The performance of the DBC-GVF and the IFVF techniques with and without the HIE is shown 

in Table 4. Note that around 10% accuracy improvement is achieved for both DBC-GVF and IFVF 

when HIE is incorporated. The results are also more robust as demonstrated by the lower standard 

deviations of the TMM. Fig. 15 presents subjective comparison of different segmentation 

techniques. With the HIE, the segmented contours are closer to the ground truth compared to the 

same techniques without the HIE. 

Note that image patterns, even without cavities, may generate close to ring-like shape after the 

HIE step. Fig. 16 shows some of these cases. For example, the image in the bottom row contains a 

pattern similar to a cavity. To eliminate this type of candidates, the fine scale feature classification 

step in our approach is necessary. The accuracy of our final cavity detection is evaluated in the next 

section. 

D. Accuracy of Final Cavity Detection 

 

Before performing the final cavity detection, 160 candidate contours are divided into cavity and 

non-cavity contours. Candidate region reported by the classifier as highlighted by the green 

windows in Fig.12 may not contain true cavities. Also, even if a reported window contains the 

entire cavity, its segmented contour may not be the same as the ground truth. To evaluate the 

accuracy of the final contour classification, we need to impose a value TMM>0.7 (based on the 

segmentation accuracy of 67.1% reported in Table 4), in order to qualify a candidate to be a true 

cavity; otherwise it is considered as non-cavity. Three contour-based features (Circularity, GICOV 

and KLD) are extracted from the candidate contours for the final cavity classification. To evaluate 

the performance of classification, sensitivity, specificity and accuracy are calculated as follows: 

# of Correctly-Detected Cavity Contours
Sensitivity 100%

Total # of Cavity Contours
        (17) 
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# of Correctly-Detected Non-Cavity Contours
Specificity 100%

Total # of Non-Cavity Contours
     (19) 

# of Correctly-Detected Contours 
Accuracy 100%

Total # of Candidates Contours
           (20) 

For our sample size, we use cross-validation method [31] for the SVM classification. The 

classification result for the 160 candidate contours is shown in Table 5. It can be observed that the 

detection accuracy is increased by more than 8% in our approach after adding KLD feature. Fig. 17 

shows cavity detection results of HKG [6] and the proposed technique, which demonstrate that our 

technique can detect more true cavities and detect fewer false cavities. As illustrated in Fig. 17, the 

proposed cavity detection system identifies all cavities annotated by the radiologists and there is 

only one false alarm. The presence of cavities in the upper half of the lungs, especially when there 

are multiple or bilateral cavities, should raise suspicion of TB in the appropriate epidemiologic 

and/or clinical context. Unfortunately, in practice, a lot of these findings are not mentioned in the 

radiologist's report, because the epidemiologic or clinical information, necessary to raise suspicion, 

is not provided by the ordering physician on the requisition. This is often the case in geographic 

regions where TB rate is low. Based on the clinician’s perspective, a relatively higher false positive 

rate is better than false negatives because the latter can cause an infectious TB to spread. Even with 

false positives, clinicians find automatic cavity detection system helpful in reducing a large 

number of true negatives and radiograph examinations. This is beneficial given the limited 

radiologists available particularly in remote communities and developing countries. 

The radiologists also classified the true cavity contours into two categories: E-Group and 

D-Group, containing cavities which are ‘easy’ or ‘difficult’ to identify, respectively. The D-Group 

contains cavities even radiologists found them difficult to identify without other demographic or 

additional information. False cavity contours were then combined with each of these two groups. 

The cross-validation SVM classification results of these groups are shown in Table 6 and 7. 
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Observe that on average the classification accuracy in each group is higher than the result reported 

in Table 5. The performance of the E-Group is significantly improved by adding the KLD feature. 

In the D-Group, although the intensity variation inside and outside a cavity changes only slightly 

making it very difficult to identify the contour even for radiologists, there is still improvement in 

the detection result. This shows that the classifier can perform better if trained using more specific 

knowledge. 

V. CONCLUSIONS 

 

In this paper, we proposed an efficient coarse-to-fine dual scale feature classification technique 

for TB cavity detection in chest radiographs. Experimental results demonstrate that the proposed 

technique outperforms existing methods in three aspects. First, a lower missing rate is achieved 

because in the proposed method local cavity region-related coarse features, such as geometric, 

textural and gradient features, are taken into consideration. Second, edge-based segmentation 

becomes more accurate by incorporating HIE to enhance the contours. Third, the final cavity 

detection accuracy is greatly increased by introducing the fine scale feature classification using 

three types of contour-related features, which includes shape, edge and region. Our work 

contributes in the development of CAD systems for infectious TB diagnosis, because of the higher 

detection rate and lower missing rate compared to other techniques. Future work will focus on 

exploring novel algorithms to model other characteristics of infectious TB. 
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TABLES 

 
TABLE 1 

FINE FEATURE VALUES OF THREE CONTOURS IN FIG. 9(E)  

 Circularity GICOV KLD 

Contour-1 0.110 15.332 1.493 

Contour-2 0.145 13.681 2.279 

Contour-3 0.688 15.262 0.278 

 

TABLE 2 

PARAMETERS CONFIGURATION IN THE PROPOSED TECHNIQUE  

Modules Parameters Names Parameters Values 

GTM 

Template size 75×75 pixels 

Wall thickness    [5, 20] 

Aspect ratio a/b [1, 1.6] 

Rotation angle   {0°,45°,90°,135°} 

LHFC 

Window size 75×75 pixels 

Cell size 8×8 pixels 

Block size 2×2 cells 

Block overlap 0.5 

SVM parameters Default values in LIBSVM software [28]  

ACS 
Snake evolution direction   1 

Convergence threshold t 0.05 

CFC SVM parameters Default values in LIBSVM software [28]  

 

TABLE 3 

CANDIDATES DETECTION RESULTS  

 HKG [6] GTM [30] GTM+LBP GTM+HOG GTM+LBP+HOG 

# of Cavities 50 50 50 50 50 

# of Candidates 170 164 315 229 160 

# of Missing Cavities 22 18 10 17 7 

Missing Rate (MR) 44% 36% 20% 34% 14% 

 

TABLE 4 

SEGMENTATION ACCURACY EVALUATION 

 
DBC-GVF 

Without HIE 

DBC-GVF 

With HIE 

IFVF 

Without HIE 

IFVF 

With HIE 

Average of TMM 55.1% 64.6% 56.8% 67.1% 

Std. of TMM 15.8% 12.6% 12.2% 9.3% 

Mean of TMM 58.2% 64.9% 59.3% 66.1% 

 

TABLE 5 

CAVITY DETECTION EVALUATION  

 Sensitivity Specificity Accuracy 

Circularity+GICOV [6] 62% 46% 54% 

Circularity+GICOV+KLD 70% 60% 65% 

 

TABLE 6 

CAVITY DETECTION EVALUATION OF E-GROUP 

 Sensitivity Specificity Accuracy 

Circularity+GICOV [6] 65% 78.2% 71.6% 

Circularity+GICOV+KLD 78.8% 86.8% 82.8% 

 

TABLE 7 

CAVITY DETECTION EVALUATION OF D-GROUP 

 Sensitivity Specificity Accuracy 
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Circularity+GICOV [6] 57.6% 88% 72.8% 

Circularity+GICOV+KLD 69.4% 81.6% 75.5% 
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FIGURE LEGENDS 

 

Fig. 1. The processing steps of a CAD system in chest radiology. 

Fig. 2. Occlusion of cavities in chest radiographs (in the red rectangle). 

Fig. 3. Schematic of the proposed CAD framework. It contains three major steps, which are built 

upon five modules: Gaussian-model-based Template Matching (GTM), Local binary pattern and 

Histogram of oriented gradient-based Feature Classification (LHFC), Hessian-matrix-based Image 

Enhancement (HIE), Active Contour-based Segmentation (ACS) and the Contour-based Feature 

Classification (CFC). 

Fig. 4. Line-cut intensity profile analysis of ‘hole’ like cavity region. (a) a cavity region; (b)-(d) 

Line-cut intensity profile in four directions; (f) customized template for mimicking the cavity 

pattern. 

Fig. 5. An example of cavity templates. a/b<1.6, wall thickness   within [5,20], and   = 

0°,45°,90°,135°. 

Fig. 6. An example of calculating LBP values in an 8-neighbor cell. 

Fig. 7. An example of the LBP and HOG features. (a) an image window containing a cavity; (b) 

six LBP features corresponding to (a); (c) the HOG feature vector (1×1764) corresponding to (a). 

Fig. 8 The block and cell divisions in a window image. Letters b and c stand for a block and a 

cell, respectively. 

Fig. 9. An example of cavity candidates detection using the proposed technique. (a) Original 

CXR image; (b) Candidate detection results in ULZ obtained using GTM+LHFC where the green 

rectangular windows (C1, C2, C3) represent the candidates, and the blue dotted contour is the true 

cavity annotated by radiologists; (c) Magnified candidate windows: C1-C3 (left to right); (d) HIE 

results of C1-C3; (e) IFVF results of C1-C3 with the help of HIE; (f) Final cavity detection results 

using fine feature classification. Red contour is the detected cavity, while the cyan ones are the 
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non-cavity contours. 

Fig. 10. The 2
nd

 derivative of a 1D Gaussian kernel probes inside/outside contrast of the range 

(- , ). In this example, 
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Fig. 11. Sample histograms of cavity properties. (a) histogram of diameter; (b) histogram of 

circularity; (c) histogram of wall thickness, where “Thick”(≥ 16mm); “Intermediate”(4-15 

mm); “Thin”(< 4mm); “Uncertain”(wall not discernable). 

Fig. 12. An example of the target area. The enhanced subimage inside the green rectangle is the 

result of the preprocessing procedure. 

Fig. 13. Comparison of candidates detection between HKG [6] and the proposed technique. (a), 

(c) are the results of HKG, while (b), (d) are generated from the proposed technique. Green regions 

in the images are cavity candidates regions reported by the classifier, and blue dotted contours are 

the true cavities annotated by radiologists. 

Fig. 14. Comparison of candidate detection in the coarse feature classification step using (a,d) 

GTM+LBP, (b,e) GTM+HOG, (c,f) GTM+LBP+HOG. Note that in the first row HOG misses the 

cavity but LBP is able to detect it. In the second row, LBP misses the small cavity but HOG can 

detect it. In both rows our technique is able to detect all the cavities. 

Fig. 15. Cavity segmentation result comparison using different edge-based snakes with and 

without HIE. From top to bottom, the cavity is more and more difficult to identify. Blue contours 

are the true cavities annotated by radiologists. Green contours are the computer segmentation 

results. 

Fig. 16. Segmentation results of candidates without cavity. 

Fig. 17. Cavity detection comparison between HKG [6] and the proposed technique. Blue dotted 

contours are the true cavities annotated by radiologists. Red contours are the detected cavities, 
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while the cyan ones are the non-cavity contours. 


